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An Equation of State for Two-Center Lennard—Jones
Fluids
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A new equation of state (EOS) is proposed for the Helmholtz energy F of two-
center Lennard-Jones fluids. The EOS is written in the form of a generalized
van der Waals equation, F=F, + F,, where F|, accounts for the hard-body
interaction and F, for the attractive dispersion forces. The equation is con-
structed on the basis of previously published data sets and results from new
extensive computer simulation studies. It correlates pressures and internal
energies over a wide fluid range for two-center model fluids with elongations up
to 0.67 in reduced units with a high accuracy and shows an excellent description
of the vapor-liquid coexistence properties. Comparisons of results from the new
EQOS with other data sets and recently published VLE from the NpT plus test
particle method show very good agreement.

KEY WORDS: equation of state; Lennard-Jones fluid; molecular simulations;
thermodynamic properties.

1. INTRODUCTION

The two-center Lennard-Jones (2CLJ) potential introduced by Sweet and
Steele [1] is a widely used model in theoretical and simulation studies
on fluids with molecules of nonspherical shape. While in the case of a
monatomic Lennard-Jones fluid numerous simulation results are available
in the literature which prompted the construction of several equations of
state (EOS) [2-6], there was only one EOS published for the 2CLJ fluid
by Sowers and Sandler [7]. Their aim was less the construction of a
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highly accurate EOS than to apply generalized perturbation theory to
the development of new equations of state with a very few adjustable
parameters. Sowers and Sandler successfully used a three-parameter corre-
sponding-states principle to extend two previously reported equations of
state for the monatomic Lennard-Jones fluid [ 3] to molecular fluids. The
three corresponding-states parameters were fitted to simulation data for
several model fluids in the supercritical region only. Sowers and Sandler
did not include any simulation data for the vapor-liquid equilibrium
(VLE) of 2CLJ molecules in their fitting procedure. But just accuracy in
the description of the VLE is essential for using the EOS successfully in
parameter studies on real fluids or as a basis for extension to dipolar fluids.

Several computer simulation studies were used to describe the vapor—
liquid phase equilibrium (VLE) of 2CLJ molecules in the last years. Gupta
[8] used thermodynamic integration to calculate Helmholtz free energies.
Dubey et al. [9] used the Gibbs ensemble, and recently Kriebel et al. [ 10]
published VLE obtained from the NpT plus test particle method. More-
over, Kriebel [11] generated large data sets for several molecular model
fluids covering the whole fluid region. On the other hand, an efficient
optimization algorithm developed by Setzmann and Wagner [12] enables
us to optimize the form of a complex equation and to determine its param-
eters. This algorithm was successfully used in the construction of our EOS
for a monatomic Lennard-Jones fluid [6].

Hence, we have good basis for the construction of a new equation of
state for molecular fluids which shall be able to describe the whole fluid
region as well as the vapor-liquid phase equilibria accurately. The new
EOS is given in the form of a generalized van der Waals equation,
F=Fy+ F,, where F,; accounts for the hard-body interaction and F, for
the attractive dispersion forces. We believe this form to be advantageous in
study of mixtures if special mixing rules are used for F,; and F, and,
finally, also for the polar contributions to F [13].

2. FUNCTIONAL FORM OF THE EQUATION

We consider a two-center Lennard-Jones (2CLJ) fluid characterized
by the parameters ¢ and o. The distance between the interaction sites
within one molecule is described by the elongation L =//g. We denote all
quantities in reduced units, such as the reduced temperature 7* = kT/e, the
reduced density p* = pa?, the reduced pressure p = po’/e, and the reduced
residual internal energy u* = U/Ne.

The new equation of state shall be an expression of the residual Helmholtz
energy F as a function of the temperature T, the density p, and the elongation L,
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F=F(T, p, L). Furthermore, we want to use the form of a generalized van
der Waals equation,

F=F,+F, (1)

where F; denotes the hard-body contribution and F, the contribution due
to the attractive dispersion forces.

Let us first discuss the hard-body contribution Fy. Accoding to
Carnahan and Starling [ 14] the residual Helmholtz energy of a system of
hard spheres with the packing fraction ¢ is given by

Fu _(4-38) )
RT~ (1-¢7

Boublik and Nezbeda [ 5] extended this equation to molecular fluids. They
considered the core—core distance !/ by using the anisotropy parameter «
and obtained

/
Ly=- 3
HTd (3)
n 3 |-

a=(1 +Ly)(2+Ly)
(2+3L,—L})
Fy L (e 4 3) E - 3al?

RT=(a'—l)1n(1—C_)+ TIE

(5)

(6)

For spherical molecules the anisotropy parameter « becomes | and Eq. (6)
reduces to the Carnahan-Starling equation, Eq. (2).

Values for the hard-sphere or hard-dumbbell sphere diameter d are
obtained from perturbation theories. Owing to the temperature dependence
of d. it is useful to have a correlation equation for the packing fraction ¢.
Saager et al. [16] developed an equation for ¢ based on results of the
hybrid Barker-Henderson theory of Smith [17],

(&/¢,) { <T>} !
—_ = 1-— — 7
(p/po) a+i “ T, @

with @ =0.689, y=0.3674, and ¢,=0.1617. For nonpolar substances the
quantities T, and p, approximately describe the critical point.
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Since exact critical temperatures and densities are very difficult to
determine on the basis of computer simulations, we decided to use the so-
called pseudocritical quantities obtained by Fischer et al. [ 8] from pertur-
bation theory studies. While the pseudocritical density p, is nearly equal to
the critical density p., the pseudocritical temperature 7, is known always
to be about 15% higher than 7T, [ 18]. Therefore, we have to modify the
equation of Saager et al. again. Furthermore, we use correlation functions
SL), fo{L), f5(L), and f,(L) given by Eqs. (8)-(11) to describe the quan-
tities ¢,/p,. T, «,,, and p, as functions of the elongation L =//o.

ALY=P +P,-L*+P,- L +P,-L* (8)

],(L)_{(P5+P(,~L)/4(l+P7-L+Px-L2) for L=00 )

2T UPs+P,- L)1+ P, L+ Py LY for L>00

JALYy=Py+Pyy-L*+ P, - L** + P,- L¥10)

./J(L)=(P|1+P|4L)/(1+P|;L+P”,L2) (11

For the hard-body contribution Fy,, we finally obtain

Fu _ Ly (fAL)? +3f(L)) €+ (L) &2

RT - = DIn(l-¢ * - O 12

RT (f3(L) Dn(l1-&)+ TEGE (12)
.= *f(L)< 1 ) (13)
C=pP7T 0.67793+0.32207[T*/fg(L)]“"‘(’u

For the description of the attractive dispersion force contribution F,, we
make an ansatz of the form

Fa g (T7 >< p* > (L) { < p* ” "
RT ?'(/g(u 7ary) SRR | 7 (14)

The powers m,, n;, 0;, p;, and g, as well as the coeflicients ¢; are determined
by the optimization procedure of Setzmann and Wagner [12].

3. DATA AND OPTIMIZATION PROCEDURE

Although the simple Lennard-Jones fluid has been thoroughly invest-
igated by computer simulations in the last decades, there are very few
simulation data available for the 2CLJ fluid. In 1993 Kriebel [11]
generated extensive data sets for model fluids of the elongations L =0.22,
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Table 1. Data Sets Used in the Construction of the Equation of State

L Source Number of state points
0.22 Kriebel [11] 51
This work 98
Suager and Fischer [22] 46
Kriebel et al. [ 10] 16
0.3292 Kriebel [11] 57
This work 86
0.505 Kriebel [11] 56
This work 80
Kriebel etal. [10] 15
0.67 Kriebel [11] 57
This work 74
Lustiget al. [ 23] 19

L=0.3292, L=0.505. and L =0.67. Therefore, these elongations, together
with the simple Lennard-Jones fluid treated as a 2CLJ fluid with L =0.0,
were chosen to be the bases in the construction of a new equation of state,
which consequently should be able to describe two-center molecules of
elongations from L =0.0 to L =0.67.

Each data set of Kriebel [ 11] contains 50 to 60 data points. Although
these data cover the entire fluid region, the grid is too wide for the con-
struction of an accurate EOS. So we decided to generate additional data
sets for the model fluids L =022, L =0.3292, L =0.505, and L=0.67 by
NVT molecular dynamics simulations. For each fluid we computed 70 to
100 data points. These data sets as well as the sets of Kriebel [ 11] together
with the concrete simulation conditions are available upon request from
the authors on floppy disk. The data sets finally used in the construction
of the EOS are shown in Table 1. In addition, we used explicitely calculated
second virial coeflicients as well as VLE data of Kriebel et al. [ 10]. For the
elongation L= 0.0 we went back to the data set already used for the con-
struction of our Lennard-Jones EOS, which was recently published [6].

If we reduce T* and p* to the pseudocritical quantities 7% and p 5, we
can specify the ranges of validity of the new equation of state for the 2CLJ
fluid in general to

04<T*/T*<50
0.0 < p*/p* <3l

For our five model fluids we obtain the ranges given in Table IL
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Table Il. Ranges of Validity of the New EOS for the Model Fluids Used for Construction

L T* p*
0.00 2.32-29.16 0-0.97
0.22 1.85-23.10 0-0.84
0.3292 1.58-19.71 0-0.75
0.505 1.23-15.39 0-0.63
0.67 1.01-12.68 0-0.54

To get an idea of how the state points are distributed we show in
Fig. 1 the grid for one model fluid, L =0.3292. Note that for the 2CLJ
model fluids the state point grids are much wider than for the simple
Lennard-Jones fluid, for which various data sources are available in
literature. Therefore, any data assessment procedure has to be done espe-
cially carefully. Incorrect values are often very difficult to recognize due to
a lack of state points in direct neighborhood. We have reweighted or
excluded only data points which were obviously incorrect and so most of
the data remained unchanged.

Let us now have a look at the critical quantities T* and p*. For the
simple Lennard—Jones fluid several investigations were made to determine
these values but the results differ strongly according to the method used by
the authors. So we decided to determine the critical point on our own by
careful computer simulations in large systems. The method and results are
given in an earlier work [6]. However, due to these investigations we

6

T, 3

Fig. 1. State point grid for the model luid L =0.3292 with the simulation
points of Kriebel [11] (') and those of this work ( x ).
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Table III.  Coefticients ¢, and Powers m,, n;, o;. p,. and ¢, for the Attractive Part of the

Helmholtiz Energy F,/RT in Eqs. (14) and (20)

¢ m n 0 r q
—0.25359778252E4+00 —1.5 | 0 0 0
0.94270769752E—-02 —-15 3 —1 0 0
0.10937076431 E—03 —15 7 -2 0 0
—0.45230360227E-05 -5 9 -3 0 0
—0.98945319827E+ 00 -1.0 1 0 0 0
0.77816220730E£ + 01 —-1.0 2 -3 0 0
—0.19338901724E4+02 -1.0 2 -2 0 0
0.16188444167E+02 —-1.0 2 -1 0 0
— 047837698146 £+ 01 —-1.0 2 0 0 0
—0.37128104806E—05 —1.0 9 -3 0
0.11481369341 E+ 01 —0.5 1 ~3 0
—0.13600256513E+ 01 —0.5 1 -2 0
—0.34629572236E—05 —05 9 -3 0 0
—0.48388274860E 400 0.0 1 -3 0 0
0.92061274747E 400 0.0 1 -1 0 0
—0.38763633820E£+00 0.0 1 0 0 0
—(.20652959726 E+ 01 0.0 3 ! 0 0
0.53102723110E£+01 0.0 3 2 0 0
—0.45202666343 £+ 01 0.0 3 3 0 0
0.12858167202E 4 01 0.0 3 4 0 0
0.31043103969E —03 0.0 5 4 0 0
0.76115392332E-05 0.0 8§ -1 0 0
—0.15141679018E + 01 —-20 2 -2 -1 1
0.26132719232E4-01 =20 2 —1 -1 1
—0.88015285297E+00 -20 2 0 -1 1
—0.48730358072E-02 —-20 5 -1 -1 1
—0.14612399648 E—01 0.0 5 3 -1 1
—0.19908427778E—03 0.0 9 2 —1 |
—0.29960728655E+00 —4.0 2 -3 -1 2
0.25016932001 £+ 00 —40 2 -2 -1 2
0.16495699794E - 01 —4.0 4 —1 -1 2
0.35210453535E400 -30 1 -3 —1 2
—0.43243419699E 4+ 00 -30 [ -1 -1 2
—0.31194438133E£—-01 -3.0 4 4 —1 2

840 18 3-8
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estimated the critical point of the Lennard-Jones fluid to be T* =1.328
and p¥ =0.3107. Therefore, we constrained the new EOS for molecular

fluids to
5P>
5P ~0 (15)
<5p T,L Tope- Ly,
and
&P
<—:> _0 (16)
op ) rL Tere Ly

with 7T* =1.328, p¥=0.3017, and L, =0.0.

In the case of the other model fluids we find critical quantities given
by Gupta [8], Dubey et al. [9], and Kriebel et al. [ 10], obtained by dif-
ferent simulation methods. As these values also differ strongly, we decided
not to use any critical point constraints for one of the other elongations.

To find the contribution of the attractive dispersion forces in the form of
Eq. (14), we subtracted the hard-body contributions from the data compiled
in Table I from the virial coefficients and from the VLE data of Kriebel et al.
[10]. Then we tried to find an optimized ansatz for F, which simultaneously
minimizes the standard deviations of these data. We used the optimization
strategy of Setzmann and Wagner [2]. In that procedure, a “bank of terms”
is created by prescribed sets for the powers mi;, n;, 0, p;, and ¢; in Eq. (14).
From this bank of terms the most effective elements are selected by a special
search algorithm which combines a stepwise regression analysis with
elements of an evolutionary optimization method. Table III contains
the powers and coefficients obtained by this procedure for the attractive
contribution to the Helmholtz energy £, given in the form of Eq. (14).

4. DISCUSSION OF THE NEW EQUATION

The new equation of state for molecular fluids is given by Egs.
(17)—(20):

F=F,+F, (17)
Fu _ 2 o AL H3A(L) E-3(L) &
R—T—(f_z(L) D) In(l1—-<)+ 1-0) (18)

1
$=r"L) <0.67793 +0.32207[ T*/fz(L)]"--“’”) (19)

s () (i morenln(£)]
RT ;C' D) \7an) B e Pl 7o (20)
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Table IV. Coeflicients P, for the

Correlation Egs. (8)-(11}

P

'

C\DM\JO\U!_‘;‘QJI\J—

-

SN e

0.5256
3.2088804
—3.1499114
0.43049357
34.0122223
17.2324198
0.52922987
12.7653979
1.0
0.5296092
—0.4531734
0.4421075
0.3128
111519758
348878614
6.10644999
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Table V. Standard Deviations for the Pressure and the Internal Energy Obtained from the

New EOS for the data Sets Used for Construction

Model fluid L =00 L=022 L =03292 L =0505 £ =067
STD,,r 1.5746 1.3373 1.9952 1.7733 1.8831
STD, 1.8645 1.8346 1.9925 1.9360 2.0393

Table VI. Standard Deviations for the Pressure and the Internal Energy Obtained from the

New EOS for the Data Set of Miiller [19]

L T* p* pEm ApEin plos STDup udim Auding utos STD,
0.0 460 0822 856 020 8622 0309 22114 006 —220916 0373
0.1 434 0792 792 025 8167 0988 —21.032 006 —209868 0.753
0.2 380 0726 6.64 020 6738 0491 —18.696 0.06 —18.6903 0.09
03292 311 0635 503 015 5025 0031 -—15713 005 —157140 0.021
0505 243 0533 330 015 3336 0238 —12771 005 —127594 0232
0.67 200 0458 202 020 2013 0037 -10892 005 —10.9000 0.160
0793 177 0414 131 020 1458 0739  —-9.894 004  —99954 2534
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Table VII.  Standard Deviations for the Pressure and the [nternal Energy Obtained from the
New EOS for the Data Sct of Saager and Fischer [20]

r* ¥ P Apding Plos STD,"-/‘ i Auding tfos STD,
30780 0.06084  0.146  0.002 0.1454  0.291 —1.5398 0.045 —1.6122 0.315
4.6170  0.06084  0.263  0.002 02617  0.662 — 1351 0.030 —1.3584 0.248
6.1560 0.06084 0374  0.002 0.3748 0411 —1.211 0.025 —1.2405 1.181
30780 0.14200 0247  0.007 0.2471 0.009 —3518 0.045 —3.5474 0.652
46170 0.14200  0.594  0.007 0.3917  0.329 —3.096 0045 —3.0986 0.057
6.1560  0.14200 0907  0.020 09278 1.041 —2875 0030 —2.8682 0227
46170 020280 0.884  0.020 0.8811 0.146 —4.394  0.045 —4.3857 0.185
6.1560  0.20280 1491 0025 1.4593 1.268 —4.085 0.035 —4.0906 0.161
30780 0.30420 0462 0.020 04514 0.528 —7.128 0.055 —7.0908 0.677
4.6170 030420 1.710 0015 1.6991 0.730 —6.559 0.030 —6.5523 0224
6.1560  0.30420 2918  0.035 29067  0.323 —6.106  0.030 —6.1306 0819
3.0780 0.38532 1.017  0.045 09870  0.667 —8.939 0.025 —8.9461 0.286
46170 0.38532 3120 0.070 31362 0216 —8.275 0015 —8.2816 0.439
6.1560 0.38532 51188  0.045 51572 0.685 —7.669  (0.030 —7.6914 0.747

21546 046644 0301 0.025 02921 (L3537 — 11444 Q015 —11.4358 0546
30780 040644 2.608  0.035 26269 0540 —10818 0015 —108122 0.384
46170 0460644  6.168  0.040 6.1466  0.534 —9.872 0.020 —-9.8777 0.287
6.1560 0.46644  9.348  0.060 9.3678  0.330 —-9.029 0.030 —9.0280 0.032

[.5390 0.54756 0153 0.050 0.1663  0.265 —14.027 0.025 —140093 0.709
21546 054756 2907 0.060 29775 LI75 —13.352 0030 —133377 0476
30780 0.54756  6.656  0.070 6.7034  0.677 —12.442 0.025 —124246 0.694
46170 054756 12162 0080 121685 0081 —[1.080 0.030 —11.0775 0082
6.1560 054756 17.085  0.120  17.0720  0.108 —9.857 0.035 —9.8673 0.295

1.5390 0.62868 5.617  0.080 55685 0.607  —15.655 0025 —15.6669 0477
2.1546 0.62868 9902  0.090 98670  0.380 —14.659 0.030  —14.6742 0.507
3.0780  0.62868 15446 0.100 154906 0446 —13370 0.035 —13.3660 0.115
46170 0.62868 23.520 0.120 23.6031  0.693 —11.472 0045 —114725 0010
6.1560 0.62868 30.701  0.140  30.7733  0.530 —9.780 0.045 —9.7964 0.365

and the correlation Eqgs. (8)-(11) with the powers and coefficients from
Tables 111 and 1V. The ranges of validity are shown in Table II. Here we
want to discuss the quality of the new EOS.

First, we investigate how the equation reproduces the data sets used
for construction. For that purpose we define standard deviations

"

1 (p; Ii()S_piSIM)2>| :
== - : 21
STDP'T <’7 ,g, Ap?.SlM (2




Equation of State of Lennard-Jones Fluids 693

and

(22)

i (Ui\F_OS_ Ui.SIM)2>] :

STD, <1 :
n AU} gin

i=1

where n denotes the number of state points, and p, ;.o and U, g5 are the
results from the EOS, while the simulation results are denoted p, g, and
U, sim together with their statistical uncertainties 4p; ;v and 4U, ;- The
standard dewviations for the here considered model fluids are shown in
Table V.

Now we are looking for data sets in the literature which were not
included in our optimization procedure. Such a data set is given by Miiller

4 b
PRINEE
';;_()- "\'-LIIT
ST I
aal
< 5 i
41
0.7 0.8 0.9 lx 1.1 1.2 1.3
T
2F
c\°l:
- - T
2 ~ T L7
'O-‘]t 1
BN
0.7 0.8 0.9 l* 1.1 1.2 1.3
T

< OF
:,3_
:O.O-&I T2 i
2 T1 i |
‘o
<
0.8 0.9 ]* 1.1 1.2 1.3
T

Fig. 2. Deviation plots of the vapor pressures, the
saturated liquid densitics, and the saturated vapor densities
obtained from the new EOS ( ) and from direct simula-
tion data [24] (@) in comparison with a correlation equa-
tion [24] for the model fluid L =0.0
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et al. [19], who performed simulations for a corresponding state point
p/p,=2.628, T/T,=0.789. We used these data for computing the standard
deviations and show the results in Table VI. We see that all the data up to
L =0.67 are reproduced within their simulation uncertainties. Even the
values at L =0.793 can be reproduced satisfactorily. There is another data
set available from Saager and Fischer [20] for the model fluid L =0.505.
Again we can state that the results, given in Table VII, are excellent.

One of the essential points in the discussion of the quality of an equa-
tion of state i1s the description of the vapor-liquid phase equilibrium.
Figures 2-6 show the percentage deviations of the vapor pressures, the
saturated liquid densities, and the saturated vapor densities obtained from
the new EOS and from the correlation equations of Kriebel et al. [ 10]. We

10
N
<o - =1 21
S SR 1
g st
210 L | N L L e
2.7 2.9 31 33 3.5 3.7 3.9 4.1
T
2
<
Qa0
a gl
<
22 n L L L
27 29 31 33 35 37 39 4l
T#
20
e
S0
N e S e S S 'S ¥ & =
S 0 (D SIS S S s Wi
a-10}F
< L
22 " L L L L " L
2729 31 33 35 37 39 4]
T‘

Fig. 3. Deviation plots ol the vapor pressures, the saturated
liquid densities, and the saturated vapor densities obtained
from the new EOS (-—) and from direct simulation data
[10] (@) in comparison with a correlation equation [10] for
the model Nuid L =0.22.
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st
-10 n i —_ " PR —_—
2325 27 29 31 33 35
T
2
X
a0
a aF
< A
_2 1 i i A L R
2325 27 29 31 33 35
T
20 -

X

:Q. 0

:\ [ T _T_ Y 5 S

oo Vf lf\

23 25 27 29 31 33 35
T

Fig. 4. Deviation plots of the vapor pressures, the saturated
liquid densities, and the saturated vapor densities obtained
from the new EOS {(——) und from direct simulation data
[10] (@) in comparison with a correlation equation [ 10] for
the model fluid £ =0.3292.

can state that for our model fluids the new EOS is able to describe the
phase equilibrium nearly within the simulation uncertainties.

Finally, we show in Table VIII the critical quantities for the model
fluids obtained from the new EOS in comparison with the results of
Kriebel et al. [10] from the NpT plus test particle method. Kriebel et al.
obtained their data from correlations for the saturated vapor density p”
and the saturated liquid density p’ forced into the functional form p' —p” ~
(T.—T)'* According to experimental evidence, this form holds for nearly
infinite (N ~ 10%%) real systems in the extended critical region. With a
decreasing number of particles the critical temperature is believed to
increase. Therefore we should expect higher critical temperatures from the
equation of state. Except for the elongation L = 0.22 we obtain the expected
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T

Fig. 5. Deviation plots of the vapor pressures, the saturated
liquid densities. and the saturated vapor densities obtained
from the new EOS ( ) and from direct simulation data
[10] { @) in comparison with a correlation equation [ 10] for
the model fluid L =0.505.

behavior. For the model fluid L =0.22 the EOS yields a critical temperature
which is somewhat lower than the one from Kriebel et al. [ 10]. Asking for
a reason we should mention the perturbation theory investigations of Bohn
et al. {21], who calculated hard-dumbbell diameters and packing fractions
at the pseudocritical point as well as pseudocritical densities for several
molecular fluids as a function of the elongation L. Bohn et al. find a
minimum in the hard-dumbbell diameter at about L =0.27 which causes a
maximum in the pseudocritical density. This peculiarity for small elonga-
tions could be one reason for the strange behavior we have found. On the
other hand, note that we are discussing differences of about 0.7% in the
critical temperature. The distance between the critical temperature of
Kriebel et al. [10] and their closest simulations is about 7% of T.*, and
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Fig. 6. Deviation plots of the vapor pressures, the saturated
liquid densities. and the saturated vapor densities obtained
from the new EOS (-—--) and from direct simulation data
[10] (@) in comparison with a correlation equation [10]
for the model fluid L =0.67.
Table VI1. Critical Points for the Model Fiuids Obtained from the New EOS in
Comparison with the Results of Kriebel ¢t al. [10]
Kriebel etal. [10] New equation of state
Elongation L T* p¥ T* pX p
0.22 42931 0.269406 4.264 0.270 0.380
0.3292 3.5436 0.24524 3.602 0.242 0.291
0.505 2.8001 0.20566 2.828 0.203 0.197
0.67 2.3355 0.17526 2.380 0.173 0.147
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of course the simulation uncertainties for the coexisting densities increase
as one gets closer to the critical point. Therefore, one has to be very careful
in trying to explain any peculiarity observed in the critical region.
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