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A new equation of state (EOS) is proposed for the Helmholtz energy F of two- 
center Lennard Jones fluids. The EOS is written in the Ibrm of a generalized 
van der Waals equation, F = F .  + FA, where F .  accotmts for the hard-body 
interaction and F A for the attractive dispersion lorces. The equation is con- 
structed on the basis of previously published data sets and results from new 
extensive computer simulation studies. It correlates pressures and internal 
energies over a wide fluid range Ibr two-center model fluids with elongations up 
to 0.67 in reduced units with a high accuracy and shows an excellent description 
of the vapor liquid coexistence properties. Comparisons of results from the new 
EOS with other data sets and recently published VLE from the NpT plus test 
particle method show very good agreement. 

KEY WORDS: equation of state; Lennard-Jones fluid; molecular simulations; 
tllermodynamic properties. 

1. I N T R O D U C T I O N  

T h e  t w o - c e n t e r  L e n n a r d - J o n e s  ( 2 C L J )  p o t e n t i a l  i n t r o d u c e d  by Sweet  and  

Steele  [ 1 ]  is a wide ly  used  m o d e l  in t heo re t i c a l  and  s i m u l a t i o n  s tudies  

on  fluids wi th  m o l e c u l e s  o f  n o n s p h e r i c a l  shape.  Whi l e  in the  case  o f  a 

m o n a t o m i c  L e n n a r d - J o n e s  fluid n u m e r o u s  s i m u l a t i o n  resul ts  are  ava i l ab le  

in the  l i t e ra tu re  wh ich  p r o m p t e d  the  c o n s t r u c t i o n  o f  several  e q u a t i o n s  of  

s ta te  ( E O S )  [ 2 - 6 ] ,  there  was  o n l y  one  E O S  pub l i shed  for the  2 C L J  fluid 

by S o w e r s  a n d  S a n d i e r  [ 7 ] .  T h e i r  a im  was  less the c o n s t r u c t i o n  o f  a 
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highly accurate EOS than to apply generalized perturbation theory to 
the development of new equations of state with a very few adjustable 
parameters. Sowers and Sandier successfully used a three-parameter corre- 
sponding-states principle to extend two previously reported equations of 
state for the monatomic Lennard-Jones fluid [3] to molecular fluids. The 
three corresponding-states parameters were fitted to simulation data for 
several model fluids in the supercritical region only. Sowers and Sandler 
did not include any simulation data for the vapor-liquid equilibrium 
(VLE) of 2CLJ molecules in their fitting procedure. But just accuracy in 
the description of the VLE is essential for using the EOS successfully in 
parameter studies on real fluids or as a basis for extension to dipolar fluids. 

Several computer simulation studies were used to describe the vapor- 
liquid phase equilibrium (VLE) of 2CLJ molecules in the last years. Gupta 
[8] used thermodynamic integration to calculate Helmholtz free energies. 
Dubey et al. [9] used the Gibbs ensemble, and recently Kriebel et al. [ 10] 
published VLE obtained from the NpT plus test particle method. More- 
over, Kriebel [ 11] generated large data sets for several molecular model 
fluids covering the whole fluid region. On the other hand, an efficient 
optimization algorithm developed by Setzmann and Wagner [ 12] enables 
us to optimize the form of a complex equation and to determine its param- 
eters. This algorithm was successfully used in the construction of our EOS 
for a monatomic Lennard-Jones fluid [6]. 

Hence, we have good basis for the construction of a new equation of 
state for molecular fluids which shall be able to describe the whole fluid 
region as well as the vapor-liquid phase equilibria accurately. The new 
EOS is given in the form of a generalized van der Waals equation, 
F =  FH + FA, where F H accounts for the hard-body interaction and F A for 
the attractive dispersion forces. We believe this form to be advantageous in 
study of mixtures if special mixing rules are used for F .  and F A and, 
finally, also for the polar contributions to F [ 13]. 

2. F U N C T I O N A L  FORM OF THE EQUATION 

We consider a two-center Lennard-Jones (2CLJ) fluid characterized 
by the parameters e and a. The distance between the interaction sites 
within one molecule is described by the elongation L = l/a. We denote all 
quantities in reduced units, such as the reduced temperature T* = kT/e, the 
reduced density p* = p a  3, the reduced pressure p = pa3/e, and the reduced 
residual internal energy u * =  U/Ne. 

The new equation of state shall be an expression of the residual Helmholtz 
energy F as a function of the temperature T, the density p, and the elongation L, 
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F =  F(7', p, L). Furthermore, we want to use the form of a generalized van 
der Waals equation, 

F-=Fn+F A (1) 

where FH denotes the hard-body contribution and FA the contribution due 
to the attractive dispersion forces. 

Let us first discuss the hard-body contribution Fn. Accoding to 
Carnahan and Starling [ 14] the residual Helmholtz energy of a system of 
hard spheres with the packing fraction ~ is given by 

F n _ (4d. - 3d. 2) (2) 
RT (1 _~)2 

Boublik and Nezbeda [5 ] extended this equation to molecular fluids. They 
considered the core-core distance 1 by using the anisotropy parameter 
and obtained 

/ (3) Ln d 

~=-dpd 3 I+~LH--~  (4) 

. =  (1 + LH)(2 + L u )  (5) 
(2 + 3LH - L  3 H) 

Fn (oQ + 3c0 ~ - 3ocd 2 
RT = (co ' -  1) ln(1 - ~ )  + (1 _~)2 (6) 

For spherical molecules the anisotropy parameter c~ becomes 1 and Eq. (6) 
reduces to the Carnahan-Starling equation, Eq. (2). 

Values for the hard-sphere or hard-dumbbell sphere diameter d are 
obtained from perturbation theories. Owing to the temperature dependence 
of & it is useful to have a correlation equation for the packing fraction ~. 
Saager et al. [16] developed an equation for d. based on results of the 
hybrid Barker-Henderson theory of Smith [ 17], 

__z__(r = I a +(1  _ a )  (_~o)rl ~ (7) 
(P/Po) 

with a=0.689,  ),=0.3674, and ~o=0.1617. For nonpolar substances the 
quantities To and Po approximately describe the critical point. 



686 Mecke, Miillcr, Winkclmann, and Fischer 

Since exact critical temperatures and densities are very difficult to 
determine on the basis of computer simulations, we decided to use the so- 
called pseudocritical quantities obtained by Fischer et al. [8] from pertur- 
bation theory studies. While the pseudocritical density pp is nearly equal to 
the critical density p~., the pseudocritical temperature T o is known always 
to be about 15% higher than T~ [18]. Therefore, we have to modify the 
equation of Saager et al. again. Furthermore, we use correlation functions 
f l (L) ,  .[~(L), f3(L), and f4(L) given by Eqs. (8)-(11) to describe the quan- 
tities ~-~,/Pv, To, c~p, and Pw, as functions of the elongation L = I/a. 

f j ( L ) =  P I + P~. L2 + P3. L25 + P4. L 4 

~(P~ + P,,. L)/4( 1 + P7" L + P.~. L 2) 
J~(L)= {(p~ + p,, .L)/(1 + PT" L + P~. L 2) 

f~(L) = P,~ + P.~. L 2 + Pll " L35 + Piz" t 4 ( 1 0 )  

(8 

for L =0.0 
(9 

for L > 0 . 0  

J) (L)=(PI3  + P u ' L ) / ( 1  +PI5 .  L + PI~,'L2) (11 

For the hard-body contribution F H, we finally obtain 

F H " L " R T  = (JI~(L)~-- 1)ln(1 - d ) +  ( j ~ ( ) - +  3f3(L))(1 _~)2~" + 3f3(L) d-~ (12) 

/ 1 
4 p ' f , ( L )  ~,0.67793 + 0.3220-7[ T*/J)(L)] ''3~'7~) 

(13) 

For the description of the attractive dispersion force contribution F A, we 

make an ansatz of the form 

T, .... [ ( '* )"'l F - - - & - A : ~ c , ( - - ~  ( P* Y"f~(L)",exp Pi (141 
R T  i \ J 2 ( L ) /  \ J 4 ( L ) ]  L \ f 4 ( L ) J  ] 

The powers m i, hi, oi, pi, and q~ as well as the coefficients c~ are determined 
by the optimization procedure of Setzmann and Wagner [ 12]. 

3. DATA A N D  OPTIMIZATION P R O C E D U R E  

Although the simple Lennard Jones fluid has been thoroughly invest- 
igated by computer simulations in the last decades, there are very few 
simulation data available for the 2CLJ fluid. In 1993 Kriebel [11] 
generated extensive data sets for model fluids of the elongations L = 0.22, 
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Table !. Data Sets Used in the Construction of the Equation of State 

687 

L Source Number of state points 

0,22 Kriebel [ 11 ] 51 
This work 98 
Saager and Fischer [22] 46 
Kriebel et al. [ 10] 16 

0.3292 Kriebel [ 1 I ] 57 
This work 86 

0.505 Kriebel [ 11 ] 56 
This work 80 
Kriebel et al. [ 10] 15 

0.67 Kriebel [ 11 ] 57 
This work 74 
kustig et al. [23] 19 

L = 0.3292, L = 0.505, and L = 0.67. Therefore, these elongations, together 
with the simple Lennard-Jones fluid treated as a 2CLJ fluid with L = 0.0, 
were chosen to be the bases in the construction of a new equation of state, 
which consequently should be able to describe two-center molecules of 
elongations from L = 0.0 to L = 0.67. 

Each data set of Kriebel [ 11 ] contains 50 to 60 data points. Although 
these data cover the entire fluid region, the grid is too wide for the con- 
struction of an accurate EOS. So we decided to generate additional data 
sets for the model fluids L = 0.22, L---0.3292, L = 0.505, and L = 0.67 by 
NVT molecular dynamics simulations. For each fluid we computed 70 to 
100 data points. These data sets as well as the sets of Kriebel [ 11 ] together 
with the concrete simulation conditions are available upon request from 
the authors on floppy disk. The data sets finally used in the construction 
of the EOS are shown in Table I. In addition, we used explicitely calculated 
second virial coefficients as well as VLE data of Kriebel et al. [ 10]. For the 
elongation L = 0.0 we went back to the data set already used for the con- 
struction of our Lennard-Jones EOS, which was recently published [6] .  

If we reduce T* and p* to the pseudocritical quantities T* and p*, we 
can specify the ranges of validity of the new equation of state for the 2CLJ 

fluid in general to 

0.4 ~< T*/T* <<, 5.0 

0.0 <~p*/p* <~ 3.1 

For our five model fluids we obtain the ranges given in Table II. 
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Table II. Ranges of Validity of the New EOS for the Model Fluids Used for Construction 

L T* p* 

0.00 2.32 29.16 0-0.97 
0.22 1.85-23.10 0 0.84 
0.3292 1.58-19.71 0 0.75 
0.505 1.23 15.39 0-0.63 
0.67 1.01-12.68 0 0.54 

To get an idea of how the state points are distributed we show in 
Fig. 1 the grid for one model fluid, L=0 .3292 .  Note that lbr the 2CLJ 
model fluids the state point grids are much wider than for the simple 
Lennard-Jones fluid, for which various data sources are available in 
literature. Therefore, any data assessment procedure has to be done espe- 
cially carefully. Incorrect values are often very difficult to recognize due to 
a lack of state points in direct neighborhood. We have reweighted or 
excluded only data points which were obviously incorrect and so most of 
the data remained unchanged. 

Let us now have a look at the critical quantities T* and p*. For the 
simple Lennard-Jones fluid several investigations were made to determine 
these values but the results differ strongly according to the method used by 
the authors. So we decided to determine the critical point on our own by 
careful computer simulations in large systems. The method and results are 
given in an earlier work [6 ] .  However, due to these investigations we 
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State point grid for the rnodel Ilukl L =0.3292 with the simulation 
points of Kriebel [11]  (C'I and those of this work I x ). 



E q u a l i o n  o f  S t a t e  o f  L e n n a r d - J o n e s  F l u i d s  6 8 9  

T a b l e  I l l .  Coef f i c i en t s  c, a n d  P o w e r s  nl, ,  n i, o, ,  p , ,  a n d  eli for the A t t r a c t i v e  Par t  o f  the  

I-lelnaholtz E n e r g y  F A / R T  in Eqs.  (14)  and  (20)  

c m n o p q 

- 0 . 2 5 3 5 9 7 7 8 2 5 2 E + 0 0  - 1.5 I 0 0 0 

0 . 9 4 2 7 0 7 6 9 7 5 2 E - 0 2  - 1.5 3 - I 0 0 

0 .10937076431 E -  03 - 1.5 7 - "~ 0 0 

- 0 . 4 5 2 3 0 3 6 0 2 2 7 E -  05 - 1.5 9 - 3 0 0 

- 0 . 9 8 9 4 5 3 1 9 8 2 7 E +  00 - 1.0 I 0 0 0 

0 . 7 7 8 1 6 2 2 0 7 3 0 E +  01 - 1.0 2 - 3 0 0 

- 0 .1933890 [ 7 2 4 E +  02 - 1.0 2 - 2 0 0 

0 . 1 6 1 8 8 4 4 4 1 6 7 E + 0 2  - 1.0 2 - 1 0 0 

- 0 . 4 7 8 3 7 6 9 8 1 4 6 E + 0 1  - 1.0 2 0 0 0 

- 0 . 3 7 1 2 8 1 0 4 8 0 6 E - 0 5  - 1.0 9 - 3  0 0 

0 . 1 1 4 8 1 3 6 9 3 4 1 E + 0 [  - 0 . 5  1 - 3  0 0 

- 0 . 1 3 6 0 0 2 5 6 5 1 3 E + 0 1  - 0 . 5  I - 2  0 0 

- 0 . 3 4 6 2 9 5 7 2 2 3 6 E -  05 - 0.5 9 - 3 0 0 

- 0 . 4 8 3 8 8 2 7 4 8 6 0 E +  00 0.0 I - 3 0 0 

0 . 9 2 0 6 1 2 7 4 7 4 7 E +  00 0.0 I - I 0 0 

0 . 3 8 7 6 3 6 3 3 8 2 0 E +  00 0.0 1 0 0 0 

- 0 . 2 0 6 5 2 9 5 9 7 2 6 E +  01 0.0 3 1 0 0 

0.53 [ (12723110E+01  0.0 3 2 0 0 

- 0 .45202666343  E +  01 0.0 3 3 0 0 

0 . 1 2 8 5 8 1 6 7 2 0 2 E  + 0 l  0.0 3 4 0 0 

0 . 3 1 0 4 3 1 0 3 9 6 9 E -  03 0.0 5 4 0 0 

0 . 7 6 1 1 5 3 9 2 3 3 2 E - 0 5  0.0 8 - 1 0 0 

- 0 . 1 5 1 4 1 6 7 9 0 1 8 E + 0 1  - 2 . 0  2 - 2  - I 

0 . 2 6 1 3 2 7 1 9 2 3 2 E + 0 [  - 2 . 0  2 - I - I 

- 0 . 8 8 0 1 5 2 8 5 2 9 7 E + 0 0  - 2 . 0  2 0 - 1 

- 0 . 4 8 7 3 0 3 5 8 0 7 2 E - 0 2  - 2 . 0  5 - I - I 

- 0 .14612399648  E -  01 0.0 5 3 - 1 

- 0 . 1 9 9 0 8 4 2 7 7 7 8 E -  03 0.0 9 2 - I 

- 0 . 2 9 9 6 0 7 2 8 6 5 5 E +  00 - 4 . 0  2 - 3 - I 2 

0 . 2 5 0 1 6 9 3 2 0 0 1 E +  00 - 4 . 0  2 - 2  - I 2 

0 . 1 6 4 9 5 6 9 9 7 9 4 E -  01 - 4 . 0  4 - I - [ ") 

0 . 3 5 2 1 0 4 5 3 5 3 5 E + 0 0  - 3 . 0  I - 3  - I 

- 0 . 4 3 2 4 3 4 1 9 6 9 9 E +  00 - 3.0 1 - I - I 2 

- 0 . 3 1 1 9 4 4 3 8 1 3 3 E -  01 - 3 . 0  4 4 - I 2 
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estimated the critical point of the Lennard-Jones fluid to be 7"* = 1.328 
and p*=0.3107.  Therefore, we constrained the new EOS for molecular 
fluids to 

and 

(~p)T ,L  .,-.,,.,,., = 0  (15) 

6p-j  = 0  (16) 

with T* = 1.328, p* =0.3017, and LLj =0.0. 
In the case of the other model fluids we find critical quantities given 

by Gupta [8] ,  Dubey et al. [9] ,  and Kriebel et al. [ 10], obtained by dif- 
ferent simulation methods. As these values also differ strongly, we decided 
not to use any critical point constraints for one of the other elongations. 

To find the contribution of the attractive dispersion forces in the form of 
Eq. (14), we subtracted the hard-body contributions from the data compiled 
in Table I from the virial coeff• and from the VLE data of Kriebel et al. 
[ 10]. Then we tried to find an optimized ansatz for F A which simultaneously 
minimizes the standard deviations of these data. We used the optimization 
strategy of Setzmann and Wagner [2] .  In that procedure, a "bank of terms" 
is created by prescribed sets for the powers mi, hi, o~, pi, and qi in Eq. (14). 
From this bank of terms the most effective elements are selected by a special 
search algorithm which combines a stepwise regression analysis with 
elements of an evolutionary optimization method. Table III contains 
the powers and coefficients obtained by this procedure for the attractive 
contribution to the Helmholtz energy FA given in the form of Eq. (14). 

4. D I S C U S S I O N  O F  T H E  N E W  E Q U A T I O N  

The new equation of state for molecular fluids is given by Eqs. 
(17)-(20): 

F = FH + FA (17) 

FH (18) RT (f3(L)2 -- 1)ln(1 --~) + ( f ' (L)2  + 3J3(L)) ~ -- 3J;(L) ~2 
- - =  - (1 - d )  2 

~ = p*f ,( L ) (o.67793 + O.32217[ T . / f  2( L ) ]O.3674) (19) 

F A /" T* "~'",[' p* "~'" [pi ( P* ~q'l 
RT = ,~. c i t ~ )  tf4"f-'~--L)) J3(L) '"exp L t, f4(L)i / (20) 
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Table IV. Coefficients P, for the 

Correlation Eqs. (SH( I I I  

i P, 

I 0.5256 
2 3.2088804 

3 - 3.1499114 

4 0.43049357 

5 34.0122223 

6 17.2324198 
7 0.52922987 

8 12.7653979 

9 1.0 

10 0.5296092 

II --0.4531784 
12 0.4421075 

13 0.3128 
14 1.11519758 

15 3.48878614 
16 6.10644999 

"Fable V. Standard Deviations for the Pressure and the Internal Energy Obtained from tile 
New EOS Ibr the data Sets Used for Constrttction 

Model fluid L = 0.0 L = 0.22 L = 0.3292 L = 0.505 L = 0.67 

STDp, 7- 1.5746 1.5373 1.9952 1.7733 1.883 I 
STD, 1.8645 1.8346 1.9925 1.9360 2.0393 

Table Vi. Standard Deviations Ibr tile Pressure and tile Internal Energy Obtained from the 
New EOS for the Data Set of M/.iller [ 19] 

L T* P* P~,M '~IP~,,~I 1 l!(~s STD/,,r u~,M Au~,M U*os STD,, 

0.0 4.60 0.822 8.56 0.20 8.622 0.309 -22.114 0.06 -22.0916 0.373 

0.1 4.34 0.792 7.92 0.25 8.167 0.988 -21.032 0.06 -20.9868 0.753 
0.2 3.80 0.726 6.64 0.20 6.738 0.491 - 18.696 0.06 - 18.6903 0.096 

0.3292 3.11 0.635 5.03 0.15 5.025 0.031 -15.713 0.05 -15.7140 0.021 
0.505 2.43 0.533 3.30 0.15 3.336 0.238 - 12.771 0.05 - 12.7594 0.232 
0.67 2.00 0.458 2.02 0.20 2.013 0.037 - 10.892 0.05 - 10.9000 0.160 

0.793 1.77 0.414 1.31 0.20 1.458 0.739 -9 .894  0.04 -9.9954 2.534 
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Table VII. S tandard  Devia t ions  for the Pressure and  the Internal  Energy Ob ta ined  from the 
New EOS for the Data  Set of Saager  and Fischer [2(I] 

T* P* P*,~,* .~JP]I u /~c,s  STDp, 7 u ] lu  .'lu~lu u~c~s STD,, 

3.0780 0,06084 0,146 0.002 0.1454 0,291 1.598 0,045 1.6122 0.315 

4.6170 0.06084 0.263 0.002 (I,2617 0.662 - 1.351 0,030 1.3584 0.248 

6.1560 0.06084 0.374 0.002 0.3748 0,41 I - 1.21[ 0.025 1.2405 1.181 

3.0780 0.14200 0.247 0.007 0.2471 0.009 - 3 , 5 1 8  (i).045 3.5474 0.652 

4.6170 0.142(10 0.594 0.007 0.5917 (I.329 - 3 . 0 9 6  0,045 -3.(1986 0.(157 

6.15611 0.14200 0.907 0.020 0.9278 1.041 - 2 . 8 7 5  0.(130 - 2 . 8 6 8 2  0.227 

4.6170 0.2(128(I 0.884 0.020 0,8811 0.146 - 4 . 3 9 4  0.(145 - 4 . 3 8 5 7  0,185 

6.1560 0,20280 1,491 0.025 1.4593 1.268 - 4,085 0,035 - 4 . 0 9 0 6  0.161 

3.0780 (I,3(1420 0A62 0.020 I).4514 0.528 - 7 . 1 2 8  (I.055 - 7.0908 0.677 

4.617(I 0.3042(I 1.710 0.015 1.6991 (I.73(/ - 6 . 5 5 9  0.(130 - 6 . 5 5 2 3  0.224 

6.[56(I 0.30420 2.918 0.(/35 2.9067 (I.323 - 6 . 1 0 6  0.03(/ -6.13(16 0.819 

3.078(I 0.38532 I.(117 (/.045 0.9870 1 1 . 6 6 7  - 8 . 9 3 9  0.025 -8 .9461  0.286 

4.617(I 0,38532 3.121 0.070 3.1362 0.216 - 8 . 2 7 5  0.015 - 8 . 2 8 1 6  (I.439 

6.1560 0.38532 5.188 0.045 5,1572 0.685 - 7 . 6 6 9  0.030 7.6914 0.747 

2.1546 0A6644 0,30L 0.025 0,2921 (I.357 - I 1.4"44 0,015 - 1 LA358 (I.546 

3.(1780 0.46644 2,608 0.(135 2,6269 (I.540 - 10.818 0,015 [0.8122 0.384 

4.6170 0.46644 6,168 0.04(I 6.1466 0.534 - 9 . 8 7 2  0.020 - 9 . 8 7 7 7  0.287 

6.1560 0.46644 9.348 0.(16(I 9.3678 (I.330 - 9 . 0 2 9  0,030 9.(1280 0.032 

1.5390 (I.54756 0.153 0.050 0.[663 0.265 - 14.027 0.025 - 14.(11193 0.7(19 

2.1546 (/.54756 2.907 0.(160 2.9775 1.175 - 13.352 0.030 - 13.3377 0.476 

3.0780 0.54756 6.656 0.070 6.7034 0.677 - 12.442 (I.025 - 12.4246 0.694 

4.617(I 0.54756 12.162 0.080 12.1685 0.081 - [ I . 0 8 0  0.030 - 1 1 . 0 7 7 5  0.082 
6.1560 0.54756 17.085 0.12(I 17.0720 0,108 - 9 , 8 5 7  0.035 9.8673 0.295 

1.5390 0.62868 5.617 0.080 5.5685 0.607 - 15.655 (t.025 - 15.6669 0.477 
2.1546 0,62868 9,902 0.090 9,8670 (I.389 - 14.659 0.(130 - 14.6742 0.507 

3.0780 0.62868 15.446 0.100 15.4906 0.446 - 13.370 0.035 - 13.3660 0.115 

4.6170 0.62868 23.520 0.120 23.6031 0.693 - I 1.472 0,045 - I 1.4725 0.010 

6.[560 0.62868 30.701 0.14(I 30.7753 0.530 - 9 . 7 8 0  0.045 - 9 . 7 9 6 4  ().365 

and the correlation Eqs. (8)-(111 with the powers and coefficients from 
Tables III and IV. The ranges of  validity are shown in Table II. Here we 
want to discuss the quality of  the new EOS. 

First, we investigate how the equation reproduces the data sets used 
for construction. For that purpose we define standard deviations 

(!" STDp,.T= ~" (P*'"~ Pis'M)2~' 2 
i=, Ap,r,,s,M j (21) 
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and 

(~ n UiSIM)2 12 STD,, = ~, (U,.Eos ~ (22) 

where n denotes the number of state points, and Pr and U~.Fos are the 
results from the EOS, while the simulation results are denoted P,.SJM and 
U~.s~M together with their statistical uncertainties Ap,..stM and 3U,.s~M. The 
standard deviations for the here considered model fluids are shown in 
Table V. 

N o w  we are looking tbr data sets in the literature which were not 
included in our optimization procedure. Such a data set is given by M/iller 
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Fig. 2. Deviation plots of the vapor pressures, the 
saturated liquid densities, and the saturated vapor densities 
obtained from the new EOS ( - - )  and from direct simula- 
tion data [24]  ( O )  in comparison with a correlation equa- 
tion [24]  for the model Iluid L =0 .0  
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et al. [ 19], who perlbrmed simulations tbr a corresponding state point 
,o/p:, = 2.628, T/T:, = 0.789. We used these data for computing the standard 
deviations and show the results in Table VI. We see that all the data up to 
L = 0 . 6 7  are reproduced within their simulation uncertainties. Even the 
values at L = 0.793 can be reproduced satisfactorily. There is another data 
set available fi'om Saager and Fischer [20]  for the model fluid L=0 .505 .  
Again we can state that the results, given in Table VII, are excellent. 

One of the essential points in the discussion of the quality of an equa- 
tion of state is the description of the vapor-liquid phase equilibrium. 
Figures 2-6 show the percentage deviations of the vapor pressures, the 
saturated liquid densities, and the saturated vapor densities obtained from 
the new EOS and from the correlation equations of Kriebel et al. [ 10]. We 
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Fig. 3. Deviation plots of tile vapor presstlres, the saturated 
liquid densities, and the saturated vapor densities obtained 
from the new EOS I ) and fronl direct simulation data 
[ 10] I �9 I in compar i son  with a correlation equation [ 10] Ibr 
the model Iluid L = I).22. 
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Deviation plots of the vapor pressures, the saturated 
liquid densities, and the saturated vapor" densities obtained 
from the new EOS ( ) and from direct simulation data 
[ I0] ( � 9  in comparison with a correlation equation [ 10] for 
tile model Iluid L = 0.3292. 

can state that tbr our model fluids the new EOS is able to describe the 
phase equilibrium nearly within the simulation uncertainties. 

Finally, we show in Table VIII the critical quantities for the model 
fluids obtained from the new EOS in comparison with the results of 
Kriebel et al. [ 10] from the NpT plus test particle method. Kriebel et al. 
obtained their data from correlations /'or the saturated vapor density p" 
and the saturated liquid density p' tbrced into the functional tbrm p ' - p "  
(T~-T)  ~). According to experimental evidence, this form holds for nearly 
infinite (N~  l 0  z3) real systems in the extended critical region. With a 
decreasing number of particles the critical temperature is believed to 
increase. Therefore we should expect higher critical temperatures from the 
equation of state. Except for the elongation L = 0.22 we obtain the expected 
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Fig .  5. D e v i a t i o n  plots of t he  v a p o r  p r e s s u r e s ,  t i le s a t u r a t e d  

liquid d e n s i t i e s ,  a n d  the  s a t u r a t e d  w~por densities obtained 
from t he  n e w  E O S  { } a n d  f r o m  direct simulation d a t a  

[ 1 0 ]  t �9 } in c o m p a r i s o n  w i l h  a c o r r e l a t i o n  e q u a t i o n  [ 10] fo r  

t h e  model Iluid L = 0 , 5 0 5 .  

behavior. For the model fluid L = 0.22 the EOS yields a critical temperature 
which is somewhat lower than the one from Kriebel et al. [ 10]. Asking for 
a reason we should mention the perturbation theory investigations of Bohn 
et al. [21 ], who calculated hard-dumbbell diameters and packing fractions 
at the pseudocritical point as well as pseudocritical densities for several 
molecular fluids as a function of the elongation L. Bohn et al. find a 
minimum in the hard-dumbbell diameter at about L = 0.27 which causes a 
maximum in the pseudocritical density. This peculiarity lbr small elonga- 
tions could be one reason for the strange behavior we have tbund. On the 
other hand, note that we are discussing differences of about 0.7% in the 
critical temperature. The distance between the critical temperature of 
Kriebel et al. [10 ]  and their closest simulations is about 7% of T*, and 
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Fig. 6. Deviation plots of the vapor pressures, the sutt, rated 
liquid densities, and the saturated vapor densities obtained 
flom the new EOS ( -)  and from direct simulation data 
[ 10] ( 0 )  in comparison with u correlation equation [ 10] 
for the model Iluid L = 0.67. 

Table VIII. Critical Points lbr the Model Fluids Obtained from the New EOS in 
Comparison with the Results of Kriebel et al. [ I0] 

Kriebel el ul. [ 10] New equation of state 

Elongation L T* p~* T,* p* p* 

0.22 4.2931 0.269406 4.264 0.270 0.380 
0.3292 3.5436 0.24524 3.602 0.242 0.291 
0.505 2.8001 0.20566 2.828 0.203 0.197 
0.67 2.3355 0.17526 2.380 0.173 0.147 
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of  c o u r s e  t h e  s i m u l a t i o n  u n c e r t a i n t i e s  for  t h e  c o e x i s t i n g  d e n s i t i e s  i n c r e a s e  

as  o n e  ge ts  c lo se r  to  t he  c r i t i ca l  p o i n t .  T h e r e f o r e ,  o n e  h a s  to  b e  ve ry  ca re fu l  

in t r y i n g  to e x p l a i n  a n y  p e c u l i a r i t y  o b s e r v e d  in t he  c r i t i ca l  r eg ion .  
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